Welcome to Panhandle Agriculture!

Welcome to the first issue of Panhandle Agriculture. This bi-monthly newsletter reflects the combined efforts of University of Florida Agriculture Extension Agents in northwest Florida. Our goal is to provide relevant agricultural information to the citizens of Panhandle Florida.

Panhandle Agriculture is one of five district-wide newsletters created by Extension Agents from northwest Florida, and follows the lead of our Horticulture Extension Agents’ Gardening in the Panhandle newsletter. The other newsletters now under construction are, Family Life In The Panhandle, Panhandle Outdoors, and Volunteering In The Panhandle.

Panhandle Agriculture will provide articles on row-crops, livestock, vegetables, alternative crops, pesticides, ponds, invasive species, natural resources, forage, and ag-economics. Our goal is to provide the agricultural community of northwest Florida pertinent, research-based information.

This newsletter will also eventually be available online - on its own website! This website will have many interactive features. So whether you read this newsletter online or on paper, we hope it becomes a helpful resource.

This newsletter is for you, and we encourage your feedback on how we can improve its value. We want Panhandle Agriculture to remain responsive to your questions in this fast paced and interesting world. Please feel free to contact me, Judy Ludlow (editor) or the Extension Agent in your county, with any questions or comments you have about this newsletter.

Thank you for your interest and enjoy this issue of Panhandle Ag!
Panhandle Agriculture

Counting Accumulated Winter Chill

By
Larry Halsey,
Jefferson County Extension Director

Fall temperatures turned cold early in 2008, but December was milder than average across North Florida. The 2008-09 weather is looking like 2006-07 when accumulated chill began near-normal, then turned unseasonably low during mid-winter, and finished near normal with cooler late January-early-February temperatures.

Gardeners and north Florida orchardists have reason to watch temperatures from November through mid-February. This cool season period affects fruit yields in May and June. Many deciduous fruit trees – those that drop their leaves in the fall and bud out again in the spring - have a dormancy requirement based on fall and winter chill. Blueberries, stone fruit, and apples are chill sensitive and require “a period of rest” with no growth or production activity.

The dormancy requirement is estimated as accumulated chill hours, sometimes called chilling requirements or chill units. A calendar and a thermometer are used when calculating the internal biology of chill-dependent plants for the purpose of understanding the process. There are several complicated formulas used to measure the hours necessary to meet each plant’s dormancy requirements. The most common, and the simplest, is to count all hours between November 1 and February 15 below 45 degrees Fahrenheit.

Chill was monitored for over four decades at the former UF/IFAS Research Center west of Monticello. Table 1 shows a 41-year summary with normal, or typical, chill, and the extremes of lowest and highest recorded for the area. A Florida Automated Weather Network (FAWN, http://fawn ifs.ufl.edu) station is located at the same site now.

Table 1. Cumulative Chill Hours

<table>
<thead>
<tr>
<th>Nov 1 through</th>
<th>Nov 30</th>
<th>Dec 30</th>
<th>Jan 15</th>
<th>Feb 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>121</td>
<td>342</td>
<td>591</td>
<td>700</td>
</tr>
<tr>
<td>Minimum</td>
<td>12</td>
<td>183</td>
<td>305</td>
<td>318</td>
</tr>
<tr>
<td>Maximum</td>
<td>228</td>
<td>551</td>
<td>969</td>
<td>1152</td>
</tr>
</tbody>
</table>

Blueberry buds under ice

Across the Florida panhandle, FAWN sites are located at Jay, Marianna, Quincy, Carrabelle and Monticello. Compare chill from these five sites in recent years (Table 2) to the long-term data from Monticello. Note the variability from site-to-site within a season, and from season-to-season.
The moderating effects of the Gulf of Mexico place Carrabelle’s chill hours substantially below the other area sites.

This season, through the first week of January, Monticello had about 307 hours of chill. That is almost 200 hours below normal, and close to the all-time low. But a cool January and early February could repeat the chill pattern of 2006-07, shown in Table 3. Almost half the total dormancy-breaking chill hours occurred in the final 30 day of that year’s cool season.

Cultivars (or “cultivated varieties”) are selected as having the best potential to produce under local chilling conditions. Varieties are rated by their estimated chill requirement and grouped as low, moderate and high chill hour types. Peaches and nectarines are the most chill hour sensitive fruit grown here. Examples of low chill peach and nectarine varieties are UFGold (225 hours and not recommended here), Flordaking (peach, 350 hours), Suncoast (nectarine, 400 hours). June Gold is considered a mid-to-high chill cultivar (peach, 650 hours). High chill requirement varieties or cultivars will not bloom or set fruit in moderate or warm years. Low chill varieties will accumulate their chill requirement and bloom during a mid-to-late winter warm spell, only to have a late freeze damage flowers or small fruit. Because our chill varies, prudent gardeners will plant a few of each type to “hedge their bets.” A strategy for dooryard and commercial orchards is to plant about 20%-30% each of relatively low-chill and high-chill requirement cultivars, and the balance with mid-chill fruit cultivars. In ideal years this strategy may help extend harvest seasons for home gardeners, for U-Pick growers, and for commercial producer with labor constraints.

FAWN offers a chill calculator to compare annual accumulated chill to the long term normal numbers. From the FAWN home page, click “Tools” at the bottom of the page, then look for “Air Temperature Threshold” under Cold Protection. For dormancy breaking chill, use the time period Nov 1 through Feb 15, and temperatures below 45°F.

Table 2. Hours Below 45°F from Nov 1 through Feb 15
Based on FAWN archives, 60cm, average hourly temperatures.

<table>
<thead>
<tr>
<th>Year</th>
<th>Jay</th>
<th>Marianna</th>
<th>Quincy</th>
<th>Carrabelle</th>
<th>Monticello</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-03</td>
<td>888</td>
<td>847</td>
<td>892</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2003-04</td>
<td>---</td>
<td>780</td>
<td>823</td>
<td>666</td>
<td>779</td>
</tr>
<tr>
<td>2004-05</td>
<td>588</td>
<td>605</td>
<td>637</td>
<td>535</td>
<td>671</td>
</tr>
<tr>
<td>2005-06</td>
<td>662</td>
<td>605</td>
<td>665</td>
<td>558</td>
<td>656</td>
</tr>
<tr>
<td>2006-07</td>
<td>740</td>
<td>615</td>
<td>602</td>
<td>463</td>
<td>581</td>
</tr>
<tr>
<td>2007-08</td>
<td>667</td>
<td>663</td>
<td>645</td>
<td>---</td>
<td>715</td>
</tr>
</tbody>
</table>

Table 3. Nov 1, 2006 - Feb 15, 2007 Chill Hours, by 2-week intervals

<table>
<thead>
<tr>
<th>Nov 1-15</th>
<th>Nov 16-30</th>
<th>Dec 01-15</th>
<th>Dec 16-31</th>
<th>Jan 01-15</th>
<th>Jan 16-31</th>
<th>Feb 01-15</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>108</td>
<td>90</td>
<td>45</td>
<td>56</td>
<td>115</td>
<td>134</td>
<td>582</td>
</tr>
</tbody>
</table>

North Florida Peaches
New Bahia grass Released
UF-Riata

By
Gerald Edmundson
Okaloosa County
Extension Director

Southeastern cattle production may have just entered a new era, thanks to University of Florida researchers who’ve developed a bahiagrass that withstands cold temperatures better than other varieties and produces forage longer, saving money for ranchers and dairy farmers.

The late Edwin Hall Finlayson, a former Escambia County extension agent popularized bahiagrass in the 1940s. In 1938, Finlayson noticed a unique variety of bahiagrass growing wild in the Pensacola area. Native to South America, the grass was probably transported to Florida’s Panhandle as ballast on ships, and was established accidentally. Finlayson found that cattle readily grazed on the grass. So he began recommending it to local farmers, who appreciated its resistance to disease, drought and insect attacks.

The forage became known as Pensacola bahiagrass. Its popularity spread after Finlayson and Walton County extension agent Mitchell Wilkins patented a seed-stripping machine that enabled large amounts of seed to be gathered quickly.

Today, Pensacola bahiagrass is the predominant pasture grass in the southeastern United States, covering 5 million acres, with 3 million acres in Florida alone.

UF agronomist Ann Blount, who was primarily responsible for developing the variety, released UF-Riata in response to the need for a bahiagrass variety that grew well despite winter temperatures and short daylight periods.

The superior bahiagrass was developed using relay selection and recurrent selection plant breeding techniques at the North Florida Research and Education Center in Marianna, FL and the Range Cattle REC, Ona, FL.

Bahiagrass cool-season yield at the North Florida Research & Education Center, Marianna FL.

<table>
<thead>
<tr>
<th>Bahiagrass Entry</th>
<th>Yield lbs/A</th>
<th>Yield lbs/A</th>
<th>Yield lbs/A</th>
<th>2006 Season total yield lbs/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tifquick</td>
<td>559 a</td>
<td>396 ab</td>
<td>242 ab</td>
<td>8913 b</td>
</tr>
<tr>
<td>Tifton 9</td>
<td>292 abc</td>
<td>460 ab</td>
<td>133 ab</td>
<td>8647 b</td>
</tr>
<tr>
<td>Pensacola</td>
<td>276 bc</td>
<td>295 b</td>
<td>153 ab</td>
<td>7433 c</td>
</tr>
<tr>
<td>Argentine</td>
<td>145 c</td>
<td>337 ab</td>
<td>22 b</td>
<td>6425 d</td>
</tr>
<tr>
<td>Sand Mountain</td>
<td>493 ab</td>
<td>387 ab</td>
<td>65 ab</td>
<td>7447 c</td>
</tr>
<tr>
<td>UF-Riata</td>
<td>560 a</td>
<td>539 a</td>
<td>305 a</td>
<td>9461 a</td>
</tr>
<tr>
<td>Isd .05</td>
<td>275</td>
<td>207</td>
<td>281</td>
<td></td>
</tr>
</tbody>
</table>

“lsd .05 275 207 281”
Education Center in Ona, FL. Plants were selected for daylength response and tolerance to leaf tissue burn from light frosts and freezes.

Compared to the standard bahiagrass cultivars Argentine and Pensacola, UF-Riata exhibits lower photoperiod sensitivity and improved leaf tissue cold tolerance, resulting in greater forage production under short daylengths and during the cool season. The population also shows excellent stand establishment and seedling vigor, and yields grazable forage over a longer season than other bahiagrass cultivars available on the market.

In addition, UF-Riata will be genetically fingerprinted, which makes this bahiagrass easily identifiable and helps companies assure their customers that they are receiving material of consistent, high quality. All of this makes UF-Riata the ideal choice for fall and early spring bahiagrass forage production in the southeastern U.S.

Blount has been part of UF’s bahiagrass breeding program since its inception in 1989. Other researchers involved in the development of UF-Riata include IFAS’ Cheryl Mackowiak, Paul Mislevy, Bob Myer, Ken Quesenberry, Lynn Sollenberger and Tom Sinclair, as well as the U.S. Department of Agriculture’s Bill Anderson, G.W. Burton, Sam Coleman, Roger Gates and Wayne Hanna.

UF-Riata has been exclusively licensed to seed producer Ragan & Massey Inc., based in Ponchatoula, La. The seed should be available to customers starting in late summer 2009.

Dried Distiller’s Grain, A Viable Feed Alternative Now

By Doug Mayo, Jackson County Livestock Extension Agent

Now that First United Ethanol is up and running in Camilla, Georgia, Dried Distiller’s Grain (DDG) is a more affordable feed for cattle producers in the Panhandle. Currently DDG in Camilla is selling for $125 per ton at the plant. Camilla is 82 miles from Marianna, so when you add in the cost of transportation, you can purchase DDG for around $139 per ton on trucks that deliver 23-25 tons.

Grain Storage bins

Bahia grass seed
When compared to other feed commodities, Dried Distiller’s Grain offers more protein and more energy for about the same cost. This makes DDG just one more option to consider if you are going to purchase commodity feeds in bulk.

Dried Distillers Grain (DDG) is a byproduct of the process used to make ethanol from corn. Corn is almost 2/3 starch, so the bran and oil parts of the corn kernel, that are not used for ethanol fermentation, become distiller’s grain. The oil and bran have a higher concentration of protein and fat, than the whole kernels. Finally the product is dried to make transportation more efficient. The DDG feeding values range from 25-30% crude protein, and 85-90% TDN.

<table>
<thead>
<tr>
<th>First United Ethanol DDG feed tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
</tr>
<tr>
<td>Crude Protein</td>
</tr>
<tr>
<td>Crude Fiber</td>
</tr>
<tr>
<td>Fat</td>
</tr>
</tbody>
</table>

Like any feed commodity there are some things you should know about Dried Distiller’s Grains when formulating diets. The concentration of oil in DDG makes for a fat content of 8-12%. Total fat concentration of a beef cow’s diet should not exceed 5%. DDG’s are also high in sulfur ranging from 0.3-1.2%. Beef cattle rations should contain no more than 0.4% sulfur. Phosphorous is also fairly high in DDG’s, so additional calcium may need to be fed in the mineral. When you account for all of these factors, Distillers Grains should make up less than 1/3 of a cows diet, and should not be used for free choice feeding.

The table below demonstrates the amount and expense of different commodity feed needed to meet the maintenance requirements of an 1100 pound lactating cow fed average quality hay (8% CP, 50% TDN).

<table>
<thead>
<tr>
<th>Bulk Commodity Feed Use Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed Type</td>
</tr>
<tr>
<td>DDG</td>
</tr>
<tr>
<td>Whole Cottonseed</td>
</tr>
<tr>
<td>Corn Gluten Feed</td>
</tr>
<tr>
<td>½ Soyhulls/½ Gluten Feed</td>
</tr>
</tbody>
</table>
Cotton Variety Selection

By
Mike Donahoe
Santa Rosa
County
Extension
Director

Variety selection is one of the most important decisions a cotton producer makes each season. The main thing most growers look for in a variety is consistent yield followed closely by the genetic traits it possess and fiber quality. Deltapine 555 BG/RR has been the standard variety throughout the Southeast for consistent high yields and quality for a number of years. Last year Florida growers planted over 85 percent of their acreage to DP 555. However, the registration for DP 555 and other single gene Bt Bollgard varieties will expire on September 30 of this year. This means seed will not be commercially available after this date, but if they are purchased by September 30, they may be planted in 2010.

From an insect management standpoint, the transition from the single gene Bollgard technology to two-gene Bt cotton technologies will bring improved control. Two-gene Bt Cotton varieties currently available include Bollgard II and WideStrike. Both Bollgard II and WideStrike are superior to Bollgard for control of bollworms and other caterpillar pests such as armyworms and loopers. However, the potential for worm damage still exists and both technologies should be scouted and treated on an as needed basis.

In 2009, there may be as many as 9 different technology systems available for the Southeast: Roundup Ready Flex, Bollgard/Roundup Ready, Bollgard II/Roundup Ready, Bollgard II/Roundup Ready Flex, Widestrike, Widestrike/Roundup Ready, Widestrike/Roundup Ready Flex, Liberty Link, and Bollgard II/Liberty Link.

Many changes have happened in the cottonseed industry over the past couple of years. In 2007, Monsanto bought Delta and Pine Land and divested itself of its Stoneville and NexGen brands. Bayer CropScience purchased Stoneville and Americot bought NexGen, in addition to other specific D&PL germplasm. Syngenta acquired 43 D&PL lines with Syngenta’s VipCot insect-resistant trait, but they have not yet been marketed. The major players in the Southeast cottonseed market are Monsanto (Deltapine), Bayer CropScience
(FiberMax and Stoneville), and Dow AgroSciences (Phytogen).

This year Monsanto is introducing a new naming system for Deltapine varieties. Each variety will have four numbers in the name. The first two numbers indicate the year the variety is introduced and the second two numbers indicate relative maturity based on the following scale: 10-19= early, 20-29= early-mid, 30-39= mid, 40-49= mid-full, and 50-59= full. The first two varieties released for this year are DP 0924 B2RF and DP 0935 B2RF. DP 0924 B2RF is an early-mid maturity, semi-smooth leaf variety with medium plant height and consistent high yield potential. It is very well adapted to the upper Mid-South and upper Southeast growing regions. DP 0935 B2RF is a mid-maturity, smooth leaf variety with consistent high yield potential. It performs well across a wide range of soils and management techniques. It has the nectariless trait for plant bug suppression and has good overall fiber quality. Gin turnout is listed at 39.3 percent. (For more information visit www.deltapine.com.)

Bayer CropScience says it expects to receive EPA approval for its new GlyTol glyphosate-resistant trait in 2009. Plants with the trait are resistant to glyphosate, but uses a different gene and promoter than other company’s traits. The GlyTol trait is said to provide a high level of herbicide tolerance and crop safety to full-label rates of a number of different formulations of glyphosate herbicide over a wide application window. The GlyTol-containing varieties will be available on a limited basis in 2009 with the focus on FiberMax varieties in the Southwest.

Bayer CropScience was expected to announce several new varieties at the Beltwide Cotton Conference held January 5-8. The following Stoneville varieties were released last year: ST 4498B2RF – an early-mid maturity, hairy leaf variety with medium plant height that provides excellent yield potential and fiber-quality characteristics; ST 5458B2RF – a mid maturity, hairy leaf variety with medium plant height that produces yield and fiber quality packages similar to ST 4554B2RF, but matures about one week later. For more info visit: http://www.bayercropscienceus.com/products_and_seeds/ & http://www.stoneville.com/
Dow AgroSciences has two new varieties for 2009. PHY 375 WRF is an early maturity WideStrike® Insect Protection and Roundup Ready® Flex stacked variety with excellent vigor, broad adaptation, high yield potential and very good to excellent fiber quality. This variety was commercially available on a limited basis in 2008. PHY 485 WRF is a WideStrike® Insect Protection and Roundup Ready® Flex stacked variety with early to mid-maturity and broad adaptation. It has very good to excellent fiber quality and grades. (http://www.dowagro.com/phytogen/)

Variety selection should be based on research data and local field experience. Sources of data include trials from universities, county demonstration plots, seed company trials, and consultant trials. Varieties should be “custom fit” for each field based on soil type, planting date, and other local conditions. University Official Variety Trial (OVT) results are available on the web for Alabama at http://www.aces.edu/anr/crops/, for Georgia at http://commodities.caes.uga.edu/fieldcrops/cotton/, and for Mississippi at http://msucares.com/crops/cotton/. It is best to have at least two years of university data or local on-farm experience before planting more than a few acres of a new variety.

The following table shows results of an on-farm demonstration last year in Santa Rosa County.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Maturity</th>
<th>Stand Count/ft</th>
<th>% Turnout</th>
<th>Lint Yield (lbs/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP 555 BR</td>
<td>mid-full</td>
<td>2.6</td>
<td>42.2</td>
<td>1319.1</td>
</tr>
<tr>
<td>DP 515 BR</td>
<td>mid-full</td>
<td>2.3</td>
<td>39.1</td>
<td>1293.1</td>
</tr>
<tr>
<td>PHY 480 WR</td>
<td>early-mid</td>
<td>2</td>
<td>37.7</td>
<td>1255.3</td>
</tr>
<tr>
<td>DP 445 BR</td>
<td>early-mid</td>
<td>2.1</td>
<td>42.1</td>
<td>1204.5</td>
</tr>
<tr>
<td>PHY 370 WR</td>
<td>early</td>
<td>2.5</td>
<td>40.5</td>
<td>1162.3</td>
</tr>
<tr>
<td>FM 1740 B2RF</td>
<td>early-mid</td>
<td>2.2</td>
<td>39.1</td>
<td>1159.1</td>
</tr>
<tr>
<td>DP 454 BR</td>
<td>medium</td>
<td>2.1</td>
<td>39.5</td>
<td>1155.3</td>
</tr>
<tr>
<td>PHY 485 WRF</td>
<td>early-mid</td>
<td>2.1</td>
<td>36.0</td>
<td>1141.0</td>
</tr>
<tr>
<td>ST 5327 B2RF</td>
<td>medium</td>
<td>1.9</td>
<td>38.3</td>
<td>1121.2</td>
</tr>
<tr>
<td>ST 4554 B2RF</td>
<td>early-mid</td>
<td>2.4</td>
<td>36.9</td>
<td>1101.7</td>
</tr>
<tr>
<td>DP 141 B2RF</td>
<td>mid-full</td>
<td>2.8</td>
<td>38.0</td>
<td>1099.9</td>
</tr>
<tr>
<td>DP 161 B2RF</td>
<td>mid-full</td>
<td>2.6</td>
<td>36.9</td>
<td>1089.6</td>
</tr>
<tr>
<td>PHY 375 WRF</td>
<td>early</td>
<td>2.6</td>
<td>36.7</td>
<td>1066.0</td>
</tr>
</tbody>
</table>

Plant Date: 5/22/08 Harvest Date: 10/31/08

Average Plot Size: 0.52 acres Rows/Plot: 8
Row Spacing: 36 inches Tillage: Strip-Till

Soil Type: Red Bay sandy loam
Fertilizer: 90-0-0-16 (applied sidedress as liquid 28-0-0-5 at pinhead square).
DCP Signup Underway

Signup has started for the 2009 Direct and Counter-cyclical Payment (DCP) Program for farms with base acres. You can sign up online or at local USDA service centers. Signup will continue until June 1, 2009. The June 1, 2009 deadline is mandatory for all participants. FSA will not accept any late-filed applications.

The electronic DCP (or eDCP) service will save you time, reduce paperwork and speed up contract processing at FSA offices. It is available to anyone eligible to participate in the DCP Program and can be accessed at www.fsa.usda.gov/dcp. To access this on-line service, you must have an active USDA eAuthentication Level 2 account, which requires filling out an online registration form at http://www.eauth.egov.usda.gov followed by a visit to the local USDA Service Center for identity verification.

FSA computes DCP Program payments using base acres and payment yields established for each farm. Eligible producers receive direct payments at rates established by statute regardless of market prices. For 2009, you may request to receive advance direct payments based on 22 percent of the direct payment for each commodity associated with the farm. FSA will issue advance direct payments later this month. Counter-cyclical payment rates vary depending on market prices and are issued only when the effective price for a commodity is statutorily set below its target price.

Producers who are eligible for the DCP Program will also be eligible to enroll in the Average Crop Revenue Election (ACRE) Program. The enrollment period for the ACRE Program will begin in the spring. You may first enroll in the DCP Program, receive advance direct payments and then later modify your enrollment to include the ACRE program or you may wait and elect to enroll in DCP and ACRE at the same time in spring 2009.

MILC Sign Up Underway

Signup for the Milk Income Loss Contract Program (MILC) is underway and will continue through the program’s expiration date, Sept. 30, 2012.

The 2008 Farm Bill reauthorizes the MILC Program, which operates similarly to the counter-cyclical payment program for crops, and makes three key changes in program operation. Under the Farm Bill, the MILC payment rate and the per-operation poundage limit are modified, depending on when the milk is produced. In addition, a “feed cost adjuster,” is introduced over the life of the 2008 Act, which adjusts the $16.94 per hundredweight (cwt.) benchmark price upward depending on the cost of feed rations. When available, MILC payments are based on a payment rate percentage that is multiplied by the difference between a now-flexible target ($16.94 per cwt. or higher) and the specific month’s Boston Class I price of milk.

The 2008 Farm Bill made changes to the provisions for payment eligibility and adjusted gross income (AGI). If the individual or entity has non-farm AGI greater than $500,000, the individual or entity is not eligible for MILC benefits. For more information on the MILC program, contact your local USDA Service Center.

ARS Research Explains Link between Stink Bug, Cotton Disease

Washington, D.C. (January 21, 2009)--A mystery about a disease that can destroy up to 15 percent of a cotton crop in the southeastern United States has been solved by Agricultural Research Service (ARS) researchers. The work could save cotton crops and prevent unnecessary insecticide spraying.
In 1999, scientists reported an emerging seed rot disease that was discoloring seeds and darkening fibers in cotton bolls in the southeastern states, making the crops unmarketable. It quickly spread throughout the southeastern Cotton Belt.

To study the problem, plant pathologists Gino Medrano and Alois Bell of the ARS Cotton Pathology Research Unit, part of the Southern Plains Agricultural Research Center in College Station, Texas, focused on the southern green stink bug (Nezara viridula L.) as the disease-transmitting culprit.

By infecting bolls at various stages, they found damage levels depend on when infections occur in the fruiting cycle and on how long infection is allowed to spread before harvest. Medrano is developing a test kit that will offer guidance by telling farmers if stink bugs in their fields are infested with the pathogens that cause the seed/boll rot.

Get Your Copy of the Revised Farm Pocket Notebook!
The Farm Pocket notebook contains record forms and reference information. The purpose of the notebook is to provide a recordkeeping format where the information is most often needed, and most accurately recalled – in the field. It is designed to travel with you in your shirt pocket. This revision expands the scope of the original notebook, making it more suitable for farms in Florida. It increases the focus on implementation and recordkeeping of Best Management Practices, especially Integrated Pest Management Practices. It is intended for use by small to medium sized farms producing row crops, vegetables, and livestock. The note book is available at your local county extension office, and also online at: http://jefferson.ifas.ufl.edu/agriculture/pocket_notebook.shtml#Pocket-contents. From this website you can print the pages you need.

The University of Florida IFAS Extension Needs You!
The University of Florida IFAS Extension works towards agricultural, environmental, and economic sustainability in our rapidly growing state and communities.

We accomplish this through research-based educational programs, publications, and opportunities provided to you locally.

Please consider donating to the UF IFAS County Extension office in your county. Your monetary gift is greatly appreciated, and will be used to continue our efforts at providing information and education you want and need.

To find out more about making donations and endowments to University of Florida IFAS Extension, please contact your County Extension Agents listed below, or Joe Mandernach, IFAS Development Office, at 352-392-5457, jmandern@ufl.edu.

Thank You!
Bay County
Marjorie Moore, Ph.D.
647 Jenks Ave., Suite A
Panama City, FL 32401-2660
(850) 784-6105
http://bay.ifas.ufl.edu

Calhoun County
Judy Ludlow
20816 Central Ave E.
Blountstown, FL 32424-2995
(850) 674-8323
http://calhoun.ifas.ufl.edu

Escambia County
Libbie Johnson
3740 Stefani Road
Cantonment, FL 32533-7792
(850) 475-5230
http://escambia.ifas.ufl.edu

Franklin County
Bill Mahan
66 4th Street
Apalachicola, FL 32320-1204
(850) 653-9337
http://franklin.ifas.ufl.edu

Gadsden County
Henry Grant
2140 West Jefferson Street
Quincy, FL 32351-1905
(850) 875-7255
http://gadsden.ifas.ufl.edu

Gulf County
Roy Carter
200 North 2nd Street
Wewahitchka, FL 32465-0250
(850) 639-3200
http://gulf.ifas.ufl.edu

Holmes County
Shep Eubanks
201 N Oklahoma Street
Bonifay, FL 32425-2295
(850) 547-1108
http://holmes.ifas.ufl.edu

Jackson County
Doug Mayo
2741 Pennsylvania Ave.
Marianna, FL 32448
(850) 482-9620
http://Jackson.ifas.ufl.edu

Jefferson County
Jed Dillard
275 North Mulberry Street
Monticello, FL 32344-2249
(850) 342-0187
http://jefferson.ifas.ufl.edu

Leon County
Les Harrison
615 Paul Russell Road
Tallahassee, FL 32301-7060
(850) 606-5200
http://leon.ifas.ufl.edu

Liberty County
Monica Brinkley
10405 NW Theo Jacobs Way
Bristol, FL 32321-0368
(850) 643-2229
http://liberty.ifas.ufl.edu

Okaloosa County
Gerald R. Edmondson
5479 Old Bethel Road
Crestview, FL 32536-5512
(850) 659-5850
http://okaloosa.ifas.ufl.edu

Santa Rosa County
Michael Donahoe
6263 Dogwood Drive
Milton, FL 32570-3500
(850) 623-3868
http://santarosa.ifas.ufl.edu

Walton County
Bruce H. Ward
732 N 9 Street Ste B
DeFuniak Springs, FL 32433
(850) 892-8172
http://walton.ifas.ufl.edu

Washington County
Andy Andreasen
1424 Jackson Avenue Ste A
Chipley, FL 32428-1602
(850) 638-6180
http://washington.ifas.ufl.edu

Panhandle Agriculture Jan-Feb 2009, Vol. 1, No. 1, Page 12 of 13
University of Florida IFAS Extension
Panhandle Agriculture
Solutions for Your Farm!

Information Provided By Your County Extension Agents
In Northwest Florida